Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370:1508–1519. https://doi.org/10.1016/S0140-6736(07)60457-7
Article
PubMed
Google Scholar
Siopack JS, Jergesen HE (1995) Total hip arthroplasty. West J Med 162:243–249
CAS
PubMed
PubMed Central
Google Scholar
Ferguson RJ, Palmer AJ, Taylor A et al (2018) Hip replacement. Lancet (London, England). https://doi.org/10.1016/S0140-6736(18)31777-X
Article
Google Scholar
Bayliss LE, Culliford D, Monk AP et al (2017) The effect of patient age at intervention on risk of implant revision after total replacement of the hip or knee: a population-based cohort study. Lancet 389:1424–1430. https://doi.org/10.1016/S0140-6736(17)30059-4
Article
PubMed
PubMed Central
Google Scholar
Geesink RG, Hoefnagels NH (1995) Six-year results of hydroxyapatite-coated total hip replacement. J Bone Joint Surg. 77:534–547. https://doi.org/10.1302/0301-620X.77B4.7615595
Article
CAS
Google Scholar
McKellop H, Shen FW, Lu B et al (1999) Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements. J Orthop Res 17:157–167. https://doi.org/10.1002/jor.1100170203
Article
CAS
PubMed
Google Scholar
Colombi A, Schena D, Castelli CC (2019) Total hip arthroplasty planning. EFORT Open Rev 4:626–632. https://doi.org/10.1302/2058-5241.4.180075
Article
PubMed
PubMed Central
Google Scholar
Schmidutz F, Steinbrück A, Wanke-Jellinek L et al (2012) The accuracy of digital templating: a comparison of short-stem total hip arthroplasty and conventional total hip arthroplasty. Int Orthop (SICOT) 36:1767–1772. https://doi.org/10.1007/s00264-012-1532-7
Article
Google Scholar
Gamble P, de Beer J, Petruccelli D et al (2010) The accuracy of digital templating in uncemented total hip arthroplasty. J Arthroplasty 25:529–532. https://doi.org/10.1016/j.arth.2009.04.011
Article
PubMed
Google Scholar
Dammerer D, Keiler A, Herrnegger S et al (2021) Accuracy of digital templating of uncemented total hip arthroplasty at a certified arthroplasty center: a retrospective comparative study. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-03836-w
Article
PubMed
PubMed Central
Google Scholar
Si H-B, Zeng Y, Cao F et al (2015) Accuracy of a simple digital templating in primary uncemented total hip arthroplasty. Chin Med Sci J 30:150–155. https://doi.org/10.1016/S1001-9294(15)30039-0
Article
PubMed
Google Scholar
Norman TL, Shultz T, Noble G et al (2013) Bone creep and short and long term subsidence after cemented stem total hip arthroplasty (THA). J Biomech 46:949–955. https://doi.org/10.1016/j.jbiomech.2012.12.010
Article
CAS
PubMed
Google Scholar
Van EE, Hendrickx M, Scheerlinck T (2010) Uncemented femoral stem design influences the occurrence rate of postoperative fractures after primary hip arthroplasty: a comparison of the Image and Profile stems. Acta orthopaedica Belgica 76
Gómez LFU, Gaitán-Lee H, Duarte MA et al (2021) Precision and accuracy of pre-surgical planning of non-cemented total hip replacement with calibrated digital images and acetates. J Orthop Surg Res. https://doi.org/10.1186/s13018-021-02584-2
Article
PubMed
PubMed Central
Google Scholar
H. Blackley, G. Howell, C. Rorabeck (2000) Planning and management of the difficult primary hip replacement: preoperative planning and technical considerations. undefined
Eggli S, Pisan M, Müller ME (1998) The value of preoperative planning for total hip arthroplasty. J Bone Joint Surg 80:382–390. https://doi.org/10.1302/0301-620x.80b3.7764
Article
CAS
Google Scholar
Hoikka V, Paavilainen T, Lindholm TS et al (1987) Measurement and restoration of equality in length of the lower limbs in total hip replacement. Skeletal Radiol 16:442–446. https://doi.org/10.1007/bf00350537
Article
CAS
PubMed
Google Scholar
Holzer LA, Scholler G, Wagner S et al (2019) The accuracy of digital templating in uncemented total hip arthroplasty. Arch Orthop Trauma Surg 139:263–268. https://doi.org/10.1007/s00402-018-3080-0
Article
PubMed
Google Scholar
Flecher X, Pearce O, Parratte S et al (2010) Custom cementless stem improves hip function in young patients at 15-year followup. Clin Orthop Relat Res 468:747–755. https://doi.org/10.1007/s11999-009-1045-x
Article
PubMed
Google Scholar
Bourne RB, Rorabeck CH (2002) Soft tissue balancing: the hip. J Arthroplasty 17:17–22. https://doi.org/10.1054/arth.2002.33263
Article
PubMed
Google Scholar
Asayama I, Chamnongkich S, Simpson KJ et al (2005) Reconstructed hip joint position and abductor muscle strength after total hip arthroplasty. J Arthroplasty 20:414–420. https://doi.org/10.1016/j.arth.2004.01.016
Article
PubMed
Google Scholar
Sariali E, Mouttet A, Pasquier G et al (2009) Accuracy of reconstruction of the hip using computerised three-dimensional pre-operative planning and a cementless modular neck. J Bone Joint Surg 91:333–340. https://doi.org/10.1302/0301-620X.91B3.21390
Article
CAS
Google Scholar
Issa K, Pivec R, Boyd B et al (2012) Comparing the accuracy of radiographic preoperative digital templating for a second- versus a first-generation THA stem. Orthopedics 35:1028–1034. https://doi.org/10.3928/01477447-20121120-03
Article
PubMed
Google Scholar
Sariali E, Mauprivez R, Khiami F et al (2012) Accuracy of the preoperative planning for cementless total hip arthroplasty. A randomised comparison between three-dimensional computerised planning and conventional templating. Orthop Traumatol Surg Res 98:151–158. https://doi.org/10.1016/j.otsr.2011.09.023
Article
CAS
PubMed
Google Scholar
Whiddon DR, Bono JV (2008) Digital templating in total hip arthroplasty. Instr Course Lect 57:273–279
PubMed
Google Scholar
Brenneis M, Braun S, van Drongelen S et al (2021) Accuracy of preoperative templating in total hip arthroplasty with special focus on stem morphology: a randomized comparison between common digital and three-dimensional planning using biplanar radiographs. J Arthroplasty 36:1149–1155. https://doi.org/10.1016/j.arth.2020.10.016
Article
PubMed
Google Scholar
Mainard D, Barbier O, Knafo Y et al (2017) Accuracy and reproducibility of preoperative three-dimensional planning for total hip arthroplasty using biplanar low-dose radiographs: a pilot study. Orthop Traumatol Surg Res 103:531–536. https://doi.org/10.1016/j.otsr.2017.03.001
Article
CAS
PubMed
Google Scholar
Dorr LD, Faugere M-C, Mackel AM et al (1993) Structural and cellular assessment of bone quality of proximal femur. Bone 14:231–242. https://doi.org/10.1016/8756-3282(93)90146-2
Article
CAS
PubMed
Google Scholar
Osmani FA, Thakkar S, Ramme A et al (2017) Variance in predicted cup size by 2-dimensional vs 3-dimensional computerized tomography-based templating in primary total hip arthroplasty. Arthroplast Today 3:289–293. https://doi.org/10.1016/j.artd.2016.09.003
Article
PubMed
PubMed Central
Google Scholar
Viceconti M, Lattanzi R, Antonietti B et al (2003) CT-based surgical planning software improves the accuracy of total hip replacement preoperative planning. Med Eng Phys 25:371–377. https://doi.org/10.1016/S1350-4533(03)00018-3
Article
CAS
PubMed
Google Scholar
Wako Y, Nakamura J, Miura M et al (2018) Interobserver and intraobserver reliability of three-dimensional preoperative planning software in total hip arthroplasty. J Arthroplasty 33:601–607. https://doi.org/10.1016/j.arth.2017.08.031
Article
PubMed
Google Scholar
Kuroda K, Kabata T, Maeda T et al (2014) The value of computed tomography based navigation in revision total hip arthroplasty. Int Orthop 38:711–716. https://doi.org/10.1007/s00264-013-2166-0
Article
PubMed
Google Scholar
(2013) Obesity and total joint arthroplasty: a literature based review. J Arthroplasty 28:714–721. Doi: https://doi.org/10.1016/j.arth.2013.02.011
Tohidi M, Brogly SB, Lajkosz K et al (2019) Ten-year risk of complication and mortality after total hip arthroplasty in morbidly obese patients: a population study. Can J Surg 62:442–449. https://doi.org/10.1503/cjs.017318
Article
PubMed
PubMed Central
Google Scholar
Smith KB, Smith MS (2016) Obesity statistics. Prim Care 43(121–35):ix. https://doi.org/10.1016/j.pop.2015.10.001
Article
Google Scholar
Onggo JR, Onggo JD, de Steiger R et al (2020) Greater risks of complications, infections, and revisions in the obese versus non-obese total hip arthroplasty population of 2,190,824 patients: a meta-analysis and systematic review. Osteoarthr Cartil 28:31–44. https://doi.org/10.1016/j.joca.2019.10.005
Article
CAS
Google Scholar
Mouchti S, Whitehouse MR, Sayers A et al (2018) The association of body mass index with risk of long-term revision and 90-day mortality following primary total hip replacement: findings from the national joint registry for England, Wales, Northern Ireland and the Isle Of Man. J Bone Joint Surg Am 100:2140–2152. https://doi.org/10.2106/JBJS.18.00120
Article
PubMed
Google Scholar
Wang Q, Goswami K, Shohat N et al (2019) Longer operative time results in a higher rate of subsequent periprosthetic joint infection in patients undergoing primary joint arthroplasty. J Arthroplasty 34:947–953. https://doi.org/10.1016/j.arth.2019.01.027
Article
PubMed
Google Scholar
Henckel J, Richards R, Lozhkin K et al (2006) Very low-dose computed tomography for planning and outcome measurement in knee replacement. The imperial knee protocol. J Bone Joint Surg 88:1513–1518. https://doi.org/10.1302/0301-620X.88B11.17986
Article
CAS
Google Scholar
Huppertz A, Radmer S, Asbach P et al (2011) Computed tomography for preoperative planning in minimal-invasive total hip arthroplasty: radiation exposure and cost analysis. Eur J Radiol 78:406–413. https://doi.org/10.1016/j.ejrad.2009.11.024
Article
PubMed
Google Scholar