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Abstract 

Background Conventionally, two 4.5 mm cortical screws inserted toward the posterior tibial cortex are usually 
advocated for the fixation of Fulkerson osteotomy. This finite element analysis aimed to compare the biomechanical 
behavior of four different screw configurations to fix the Fulkerson osteotomy.

Materials and methods Fulkerson osteotomy was modeled using computerized tomography (CT) data of a patient 
with patellofemoral instability and fixed with four different screw configurations using two 4.5 mm cortical screws 
in the axial plane. The configurations were as follows: (1) two screws perpendicular to the osteotomy plane, (2) two 
screws perpendicular to the posterior cortex of the tibia, (3) the upper screw perpendicular to the osteotomy plane, 
but the lower screw is perpendicular to the posterior cortex of the tibia, and (4) the reverse position of the screw con‑
figuration in the third scenario. Gap formation, sliding, displacement, frictional stress, and deformation of the compo‑
nents were calculated and reported.

Results The osteotomy fragment moved superiorly after loading the models with 1654 N patellar tendon traction 
force. Since the proximal cut is sloped (bevel‑cut osteotomy), the osteotomy fragment slid and rested on the upper 
tibial surface. Afterward, the upper surface of the osteotomy fragment acted as a fulcrum, and the distal part of the 
fragment began to separate from the tibia while the screws resisted the displacement. The resultant total displace‑
ment was 0.319 mm, 0.307 mm, 0.333 mm, and 0.245 mm from the first scenario to the fourth scenario, respectively. 
The minimum displacement was detected in the fourth scenario (upper screw perpendicular to the osteotomy plane 
and lower screw perpendicular to the posterior tibial cortex). Maximum frictional stress and maximum pressure 
between components on both surfaces were highest in the first scenario (both screws perpendicular to the oste‑
otomy plane).

Conclusions A divergent screw configuration in which the upper screw is inserted perpendicular to the osteotomy 
plane and the lower screw is inserted perpendicular to the posterior tibial cortex might be a better option for the fixa‑
tion of Fulkerson osteotomy.

Level of evidence Level V, mechanism‑based reasoning.
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Introduction
Tibial tubercle (TT) anteromedialization osteotomy, 
also called Fulkerson osteotomy, has become a standard 
surgical procedure in patients with patellofemoral (PF) 
instability associated with increased TT lateralization [1, 
2]. This procedure effectively decreases the tibial tuber-
cle–trochlear groove (TT–TG) distance and corrects the 
excessive Q angle [2, 3]. Secondly, it provides TT anteri-
orization that reduces the PF contact pressures [2]. Many 
previous studies have reported that Fulkerson osteotomy 
is a safe and effective procedure; however, it is not with-
out complications [1–5]. Nonunion or delayed union, 
tibial fracture at the distal edge of the osteotomy, loss of 
knee range of motion, skin irritation due to prominent 
hardware, superficial and deep infection, failure of fixa-
tion, and neurovascular injuries have all been reported 
[2–5].

Proper planning and performance of the osteotomy, 
secure fixation, and maintaining the stable fixation until 
the bony union is crucial to prevent implant failure and 
complications [3, 5]. The fixation should be stable enough 
for early weight-bearing and active rehabilitation to pre-
serve knee movements and thigh muscle mass. Conven-
tionally, two parallel 4.5  mm cortical screws inserted 
toward the posterior tibial cortex are usually advocated 
for the fixation of the Fulkerson osteotomy [6]. However, 
the screws inserted by this method may not provide suf-
ficient stability since the osteotomy plane is oblique. 
According to the AO principles, screws placed per-
pendicular to the fracture or osteotomy plane provide 
optimal compression and reduction [7]. Furthermore, 
bicortical fixation is well known to be stronger than uni-
cortical fixation [7]. But, the penetration of the posterior 
cortex might cause iatrogenic neurovascular injuries 
because the popliteal nerve and artery lie posterior to 
the posterior tibial cortex [8, 9]. Finally, the screw heads 
may remain prominent when inserted perpendicular to 
the posterior cortex. On the other hand, screws inserted 
perpendicular to the osteotomy plane might be advan-
tageous since they move away from the direct contact 
area during kneeling and are covered by the muscle mass 
(Fig. 1).

John Fulkerson first described anteromedialization 
tibial tubercle osteotomy in 1983 [10]. In his original 
technical description, it was reported that osteotomy 
fixation could be done via bicortical fixation with a sin-
gle cortical lag screw or unicortical with a single can-
cellous lag screw without penetration of the posterior 
tibial cortex to avoid neurovascular structures. Since 
then, a limited amount of biomechanical research on 
how to fix a tibial tubercle osteotomy has been per-
formed in the current literature (Table  1) [6, 11–19]. 
Screws of various thicknesses (3.5, 4.0, 4.5  mm), 

numbers (two or three), designs (fully threaded or par-
tially threaded), materials (stainless steel, titanium, 
and bioabsorbable polymers), cerclage applications, 
plate fixation, and augmentation techniques have been 
reported. The screws used in almost all of these studies 
were placed in the anterior–posterior direction, as rec-
ommended by the original description of the technique. 
Only three studies examine the effect of different screw 
configurations on the fixation stability of tibial tubercle 
osteotomies. Chang et al. evaluated the gap formation, 
contact pressure, and stress distribution on the oste-
otomy plane created by six different combinations by 
changing the configurations of the screws in the sagittal 
plane. In the other study, Fulkerson osteotomy with dis-
talization was modeled, and the screws were inserted 
toward the posteromedial cortex in the axial plane. 
However, no previous study examined the effect of axial 
plane divergence of screws in the axial plane on the sta-
bility of standard Fulkerson osteotomy.

Our study hypothesized that stability would increase if 
the screws were placed perpendicular to the osteotomy 
plane. Stable fixation is essential for the early initiation of 
rehabilitation and weight-bearing after the osteotomy, as 
well as the prevention of complications.

Fig. 1 Illustration showing the insertion of screw perpendicular to 
the posterior tibial cortex (a), and perpendicular to the osteotomy 
plane (b). Please note the risk of neurovascular injury with the first 
configuration. A screw inserted perpendicular to the osteotomy 
plane is covered by the muscle mass (c)
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Materials and methods
Study design and finite element method
This study utilized finite element methods that were 
carried out under static loading conditions and homo-
geneous isotropic linear elastic model assumptions. 
Besides, nonlinear contact behavior between related 
components was considered. Fulkerson osteotomy was 
generated, and the model was fixed with four different 
screw configurations.

FEA is a numerical method that utilizes models and 
simulations to examine the mechanical behavior of an 
object under certain physical conditions in a virtual 
computer environment. In the finite element method, 
complex 3D geometric objects are divided into small 
elements connected with nodes; this procedure is also 
called spatial discretization. Models can be created 
using computerized tomography data to simulate real 
bony geometry. Material properties, contact defini-
tions, and boundary conditions are defined and entered 
into the software. Finally, force–displacement equa-
tions of each small element can easily be computed and 
combined for the entire structure. Thus, displacements, 
including sliding and gapping, and strains and stresses 
arising from these displacements, can be calculated and 
visualized throughout the model and its components.

Currently, the gold standard for assessing the initial 
stability of fracture or osteotomy fixation remains bio-
mechanical testing using cadaveric models. However, 
FEA has several advantages over conventional biome-
chanical experiments. First, this method is cheaper 
than using fresh cadavers. Second, a complete inspec-
tion of the model throughout the entire structure is 
possible. Conversely, assessing internal strain and dam-
age is exceptionally challenging in cadaver models.

Additionally, it is unaffected by geometric variations 
and bone quality differences between cadavers, which 
is a significant confounding factor. Another advan-
tage of FEA simulations over biomechanical testing is 
the ability to evaluate and compare alternative implant 
designs or configurations of the same implant within 
the same bone. Moreover, new implant designs might 
be tested and modified without manufacturing the 
final prototype. Besides these advantages, FEA inherits 
certain disadvantages. Simplifying complex geometry 
and using predefined assumptions regarding material 
properties and boundary conditions are the significant 
limitations of the technique. Secondly, the divergence 
of the models from clinical reality, model verification, 
and validation are other significant obstacles that might 
result in misleading interpretations. Since FEA is fun-
damentally a metamathematical method that finds 
approximated solutions to biomechanical problems, 
errors in FEA are inevitable. Thus above-mentioned 

pros and cons should be considered when evaluating 
the outputs [20–22].

Modeling of the Fulkerson osteotomy
Computerized tomography (CT) data of a 20-year-old 
male patient (height 174  cm and weight 76  kg) with 
recurrent patellar dislocation was used to create the tibial 
model. The tibial tubercle–trochlear groove (TT–TG) 
distance was abnormal (23  mm), and Fulkerson oste-
otomy was indicated for the patient. A TT–TG distance 
larger than 20 mm is accepted as abnormal.

The CT imaging was performed using the CT scanner 
(Siemens go.Up, Siemens, Munich, Germany) installed in 
the authors’ university hospital. The following were the 
scan parameters: a total of 232 axial slices were taken at 
120 kV, 30 mA, slice distance of 1.0 mm, FoV: 218 mm, 
from the supracondylar femur to the proximal tibia. The 
patient gave written informed agreement to the anony-
mous use of the imaging files. To model and simulate the 
FEA scenarios, Materialise Mimics–Medical 3D image-
based engineering software (Materialise NV, Belgium), 
SolidWorks parametric solid modeling software (Das-
sault Systems SolidWorks Corp, Waltham, USA), and 
ANSYS Workbench FEA code (ANSYS, Ltd., Canons-
burg, PA, USA) were used.

The Fulkerson osteotomy was modeled following prior 
descriptions [10]. The osteotomy length was 72 mm, and 
the osteotomy plane was 45° relative to the posterior 
condylar axis of the tibia. Both the proximal and dis-
tal cuts of the osteotomy were slopped. A 10 mm medi-
alization was performed. The model was fixed using 
4.5  mm screws manufactured of Ti–6Al–4  V (Ti G5) 
alloy (Fig. 2a). There was no gap between the fragments 
at the osteotomy plane. For the fixation of the Fulkerson 
osteotomy, two parallel 4.5 mm cortical screws inserted 
in the sagittal plane toward the posterior tibial cortex 
are commonly recommended [6]. But, in line with the 
hypothesis in the current study (to stay away from the 
posterior neurovascular structures, to achieve a bicorti-
cal fixation, to capture the thicker posteromedial cortex 
of the tibia, and, most importantly, to achieve a fixation 
perpendicular to the osteotomy plane) the configuration 
of the screws was shifted toward the posteromedial cor-
tex of the tibia in the axial plane. We also hypothesized 
that divergent screw placement might be more resistant 
to fragment sliding and gap formation. Thus, four dif-
ferent fixation scenarios were created on the basis of the 
above-mentioned principles (Fig. 2b).

Boundary conditions and material properties
Davis et al. [12] found that a TT osteotomy failure load 
fixed with two 4.5  mm cortical screws was 1654  N in a 
biomechanical study performed on fresh frozen cadavers. 
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To simulate a worst-case scenario, a 1654  N traction 
force was applied to the patellar tendon footprint at 
the TT [12, 15, 16]. The total area of the patellar ten-
don footprint and the angle of the force vector was cal-
culated from the CT data (Fig. 3). The tibia was fixed to 
the ground from its distal part in an anatomical position, 
and two supports at the medial and lateral condyles were 
placed on the proximal tibia. Frictional contact (nonlin-
ear contact) between screw–bone surfaces and between 
bony fragment surfaces were defined in the 3D model. 
Furthermore, bonded contact definitions between corti-
cal and trabecular bone were established. According to 
previous research, the screws were preloaded with 50 N, 
and the friction coefficients between bone-to-bone and 

bone-to-screw were assigned 0.46 and 0.37, respectively 
[23–26]. Under the isotropic homogeneous linear elas-
tic material model assumptions, material properties for 
cortical and trabecular bone and titanium alloy cortical 
screws were allocated independently (Table 2) [27–33].

Mesh structure and quality verification
The accuracy of FEA simulation is considerably affected 
by the quality of the mesh structure of a model. The 
skewness metric, which defines how near to ideal a face 
or cell is in a finite element model, is one of the key 
quality measurements for a mesh structure in an FEA. 
The skewness of a distribution may be used to deter-
mine its shape and asymmetry, allowing mesh structure 

Fig. 2 a Solid model showing the details of Fulkerson osteotomy. The tibial tubercle fragment is 72 mm in length, the osteotomy plane is 45° to the 
posterior condylar axis, and 10 mm of medialization is performed. (b) The screw configurations and fixation scenarios tested in FEA
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verification [34]. A value of zero denotes an equilateral 
cell (best mesh quality), and a value of one indicates an 
utterly degenerate cell (worst mesh quality) according 
to the analysis code’s definition of skewness [35]. As 
a result, the mesh structure in this study was verified 
using the skewness measure (mesh quality). The skew-
ness values demonstrated high mesh quality for all of 
the cases evaluated, with a mean of 0.264 ± 0.01. The 
final mesh structure of the solid models was created 
using a curvature-based meshing approach. An aver-
age of 1.38 million elements and 2.06 million nodes 
were found for all solid models. Figure  4 shows a vis-
ual representation of the meshing of the models. Each 
simulation scenario was run separately with identical 
boundary conditions after completing the preproces-
sor steps, and then visual and numerical outputs were 
recorded. A Dell Precision M4800 Series mobile work-
station (Intel CoreTM i7 4910MQ CPU @ 2.90  GHz, 
NVIDIA Quadro K2100M-2 GB, and Physical Memory: 
32 GB) was used to solve the problem.

Assessment of sliding and separation
The magnitude of maximum gap formation and sliding 
distance between the osteotomy fragment and the tibia 
were calculated (Fig. 5). In addition, the equivalent (von 
Mises) stress and total deformation distributions on the 
components were retrieved from the simulation results.

Results
After loading the models with 1654  N patellar tendon 
traction force, the osteotomy fragment moved superiorly. 
Since the proximal cut is sloped (bevel-cut osteotomy), 
the osteotomy fragment slid and rested on the upper 
tibial surface. Afterward, the upper surface of the oste-
otomy fragment acted as a fulcrum, and the distal part of 
the fragment began to separate from the tibia while the 
screws resisted the displacement.

The average sliding through the upper and lower con-
tact surfaces was the least in the fourth scenario (FEA-
001: 0.165 mm, FEA-002: 0.182 mm, FEA-003: 0.133 mm, 
and FEA-004: 0.128  mm, respectively). The average gap 

Fig. 3 a Volume‑rendered 3D CT image from the lateral and anterior view. The patellar tendon footprint and the patellar tendon force vector were 
calculated. b Boundary condition of the models during loading

Table 2 Material properties assigned in the FEA set up in accordance with the homogeneous isotropic linear elastic material model

FEA finite element analysis

Material properties

Parameters Unit Model components

Cortical bone Trabecular bone Cortical 
screws 
(Ti–6Al–4 V)

Modulus of elasticity (MPa) 19,100 1000.61 115,000

Poisson’s ratio (−) 0.30 0.30 0.33

Density (kg  m−3) 1980 830 4500
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formation at the upper and lower contact surfaces was 
the least in the third scenario (FEA-001: 1.052  mm, 
FEA-002: 1.013 mm, FEA-003: 0.996 mm, and FEA-004: 
1.025 mm, respectively). The resultant total displacement 
was the least in the fourth scenario (FEA-001: 0.319 mm, 
FEA-002: 0.307 mm, FEA-003: 0.333 mm, and FEA-004: 
0.245  mm, respectively). Maximum frictional stress and 
maximum pressure between components on both sur-
faces were highest in the first scenario (FEA-001). The 
summary of the results is presented in Table 3.

Under predefined loading conditions, no permanent 
deformation or damage was detected on the screws. 
However, maximum equivalent (von Mises) stress val-
ues on the cortical and trabecular bone around the screw 
threads and the upper surface fulcrum point locally 
exceeded their yield stress points reported in previous 
studies [28, 32, 36, 37]. Figure 6 displays the visual simu-
lation results for each scenario.

Discussion
The fourth model (FEA-004) demonstrated the least 
magnitude of sliding distance in the upper surface of the 
osteotomy as well as the least magnitude of maximum 
displacement. Therefore, the fourth model emerged as 
the most favorable screw configuration, with the highest 
stiffness among these models. Based on the findings of 
the current study, a divergent screw fixation in which the 
upper screw is inserted perpendicular to the osteotomy 
plane and the lower screw is inserted perpendicular to 
the posterior tibial cortex might be recommended.

The screw configuration proposed in this study has 
some advantages besides providing better stability. Two 
previous radiologic studies investigated the safe zone 
for TTO fixation to prevent iatrogenic popliteal ves-
sel injury, a devastating complication of this procedure 
[8, 9]. The authors recommended routing the drill and 
screws toward the posteromedial cortex, which is safe 

Fig. 4 The mesh structure of the model and screws

Fig. 5 a The contact surfaces of the osteotomy (upper and lower surface). b The sliding and gap formation was measured after loading 
independently
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for bicortical fixation. In addition to being a safe zone for 
screw tips, the posteromedial cortex involves dense bone 
that provides better screw purchase. However, this analy-
sis could not demonstrate the greatest results for the first 
model comprising two parallel screws perpendicular to 
the osteotomy plane. On the other hand, the popliteal 
artery gives its major peripheric branches approximately 
5 cm distal to the tibial joint line. Thus, the risk of injury 
is higher in the upper screw than in the lower screw [38]. 

The divergent screw configuration proposed in this study 
might also significantly reduce the risk of vascular injury 
without impairing stability.

Secondly, this screw configuration might reduce the 
number of implant removal operations. The tibial tuber-
cle is in contact with various surfaces during kneeling. 
Due to its prominence and relatively thin overlying soft 
tissue, the skin over the tibial tubercle area is vulner-
able to irritation. Moreover, prominent hardware causes 

Fig. 6 Detailed visual simulation outputs of all tested scenarios
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significant discomfort. Therefore, hardware removal is 
the most frequent secondary surgical intervention per-
formed following Fulkerson osteotomy [5]. A previ-
ous systematic review including 1055 TTO procedures 
reported an overall incidence of 19% hardware removal 
[39]. In another systematic review, 49% of the cases had 
undergone implant removal following Fulkerson oste-
otomy [3]. Moreover, some authors have recommended 
routine removal of the hardware after the union of TTO, 
regardless of the presence and severity of the symptoms 
[40, 41]. Since screw placement perpendicular to Fulk-
erson osteotomy allows better positioning of the screw 
head, deep to the tibialis anterior muscle belly, as shown 
in Fig. 1, this configuration seems more feasible to over-
come the potential skin irritation. The findings of this 
study also favor the perpendicular insertion of the upper 
screw for better stability. Screws inserted perpendicu-
lar to the osteotomy plane from lateral to medial direc-
tion do not adversely affect the stability. The screw heads 
move away from the anterior direct contact surface and 
are covered by the muscle mass.

The majority of previous biomechanical studies have 
assessed the fixation techniques of TTO used in the 
extended exposure of revision knee arthroplasty [6, 11–
19, 42]. Only a few studies have focused on the biome-
chanical features of flat and oblique TTO used to treat 
PF instability. These two osteotomies are technically 
different from each other. While medial displacement is 
not performed in TT osteotomy used in revision knee 
arthroplasty, medialization is performed in PF instabil-
ity surgery. Secondly, the plane of osteotomy is oblique. 
Therefore, although these two osteotomies are simi-
lar in three-dimensional shape, the contact surface area 
decreases in medialization, and the patellar tendon load-
ing condition is changed, so both osteotomies should be 
evaluated differently.

Cosgarea et al. [11] compared the fixation strengths of 
two 3.5  mm bicortical screws in flat and oblique TTOs 
in cadaveric tibiae. The authors reported superior results 
for flat osteotomy, despite a greater contact area in 
the oblique osteotomy line. However, flat osteotomies, 
also known as Elmslie–Trillat, are no longer preferred 
because they increase patellofemoral contact pressures 
and cause osteoarthritis in the long term. Another cadav-
eric study, conducted by Warner et al. [6], compared two 
4.5  mm and three 3.5  mm cortical screws in Fulkerson 
osteotomy. Their results indicated more robust stabil-
ity in two 4.5 mm screw fixations than in three 3.5 mm 
screw fixations. Using a cadaver model, Nurmi et  al. 
[14] compared the bioabsorbable 4.5  mm poly-l-lactide 
(PLLA) screws with stainless-steel screws in the flat 
osteotomy. Although the stainless-steel screws dem-
onstrated approximately two-fold higher stiffness, the 

authors reported that the PLLA screws could resist the 
tractive forces of active knee extension. Furthermore, 
Ünal et al. [43] have reported favorable clinical outcomes 
in ten patients who had undergone Fulkerson osteotomy 
fixed with 4.8-mm headless bioabsorbable screws made 
of magnesium. Therefore, using bioabsorbable screws in 
the fixation of TTO seems practicable since it may avoid 
secondary procedures due to common hardware-related 
skin irritation.

Three previous FEA studies investigated the fixation 
of TTO used in the extended exposure of knee arthro-
plasty without medialization [15–17]. The first study 
assessed the fixation of flat tubercle osteotomy with two 
4.5 mm titanium screws implanted in the configurations 
as follows: parallel horizontal, parallel downward, paral-
lel upward, trapezoid, and divergent [16]. The authors 
reported the highest stability for parallel downward screw 
configuration depending on the least magnitude of frag-
ment displacement and gap formation. The second study 
assessed three configurations of flat tubercle osteotomy 
(step cut, bevel cut, and straight cut) and various fixation 
configurations with two 4.5 mm screws [15]. Step cut was 
reported to be the most stable osteotomy configuration, 
based on the buttressing effect inherent in the step-cut 
technique. The third FEA study investigated the effect of 
gap formation between the distal and proximal sides of 
the tibial tubercle fragment on the stability of the fixation 
with different screw configurations[17]. The proximal gap 
model resulted in inferior results compared to the distal 
gap model in all screw configurations. Among the screw 
configurations, two parallel downward screws resulted 
in the highest stability in both models. Since the effect 
of tubercle medialization or anteromedialization has not 
been studied in the studies mentioned above [15–17], the 
present study is more predictive for TTO used to treat PF 
instability. Unlike these two studies, including the screw 
configurations with alterations in the sagittal plane, the 
present research biomechanically compared the screw 
configurations with modifications in the axial plane to 
avoid prominent hardware as much as possible.

Patellar height can be normalized by distalizing the 
TT during Fulkerson osteotomy in patients with accom-
panying patella alta. In the last FEA study, the biome-
chanical stability of the various 3.5 mm, 4.5 mm cortical 
screws and 3.5 mm 1/3 tubular plate-screw augmentation 
options were compared in Fulkerson osteotomy with dis-
talization procedure [18]. Since the distal hinge and the 
proximal contact is lost in distalization procedures, the 
osteotomy becomes inherently unstable compared to a 
standard Fulkerson osteotomy. Thus, the authors rec-
ommended plate-screw-augmented fixation to achieve 
maximum stability. Although the osteotomy modeling 
differed from the current study, the screw configuration 
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was similar, and they advocated inserting the screws per-
pendicular to the osteotomy plane. All these previous 
FEA studies show that changing the screw configuration 
might increase the stability of the fixation construct in 
TT osteotomies.

The current study has various limitations as well as 
strengths. The inherent constraints of FEA must be 
considered while evaluating the results. Several preset 
assumptions were used, such as boundary conditions and 
material properties. Secondly, since the data in this FEA 
study are absolute values, a statistical comparison was 
not made. Despite the limitations of this study, it also has 
some strengths. CT data of a patient with patellofemo-
ral instability and an increased TT–TG distance were 
employed to create a precise model to simulate the clini-
cal reality. Since the bone is not uniform, the cortical and 
trabecular bones were separately defined with a bonded 
contact model. Although a cadaveric experiment did not 
validate the results of this FEA, it provides important 
information about the biomechanical characteristics of 
Fulkerson osteotomy and its fixation.

Conclusion
A divergent screw configuration in which the upper 
screw is inserted perpendicular to the osteotomy plane 
and the lower screw inserted perpendicular to the poste-
rior tibial cortex (FEA-004) might be a better option for 
the fixation of Fulkerson osteotomy. Surgeons who prefer 
two 4.5 mm cortical screws for Fulkerson osteotomy fixa-
tion can achieve a more stable fixation by applying this 
simple modification in screw configuration. In addition, 
this modification may reduce the risk of neurovascular 
injuries and thus allow safer bicortical screw fixation. 
Finally, it can reduce the need for implant removal by 
shifting the screw heads away from the direct contact 
area of the knee. However, these propositions need to be 
supported by further clinical studies.
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