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Comparison of hamstring and quadriceps 
tendon autografts in anterior cruciate ligament 
reconstruction with gait analysis and surface 
electromyography
J. Schagemann1* , T. Koebrich1, R. Wendlandt2, A. P. Schulz1,2,3, J. Gille1,3 and R. Oheim1,3 

Abstract 

Background: Anterior cruciate ligament (ACL) tear is the most frequent ligamentous injury of the knee joint. 
Autografts of hamstring (HS) or quadriceps tendons (QT) are used for primary ACL reconstruction. In this study, we 
planned to examine whether harvesting an HS graft is related to a deficit in dynamic knee stabilisation and strength 
revealed by dynamic valgus as compared with QT graft or the uninjured leg. Furthermore, if this deficit exists, is it 
compensated by higher neuromuscular activity of the quadriceps muscle?

Materials and methods: Adult patients who had undergone ACL reconstruction with QT or HS autografts were 
included in this two-armed cohort study. Clinical outcome was assessed by clinical data analysis, physical examination 
and the Lysholm Score and Knee Injury and Osteoarthritis Score (KOOS). In addition, gait analysis and non-invasive 
surface electromyography were performed.

Results: A complete data set of 25 patients (QT: N = 8, HS: N = 17) was analysed. There was no significant demo-
graphic difference between the groups. Time between surgery and follow-up was significantly longer for the QT 
group. Significant differences regarding clinical outcome were not found between the treated and untreated leg or 
between the two groups, with excellent scores at the time of follow-up. Gait analysis revealed no significant differ-
ences of varus–valgus angles. Significant differences in surface electromyography were only found in the QT group 
with increased vastus medialis obliquus activity of the treated legs (p < 0.01).

Conclusions: Our results suggest that harvesting of HS grafts for primary ACL reconstruction will not lead to a medial 
collapse and consequently impaired medial stabilisation of the knee when compared with QT grafts.

Level of evidence: IV.
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Introduction
Among those factors that impact clinical outcome after 
ACL reconstruction, graft selection might be the most 
critical yet controversial [1–3]. HS grafts are widely used 
and likely the current gold standard for primary ACL 
reconstruction [4–6]. The underlying rationale for this 
trend is a reliable and more anatomic fixation and a low 
rate of complications and resulting comorbidities [6, 
7]. However, harvesting HS grafts eventually results in 
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the impairment of flexor muscle strength and dynamic 
medial stabilisation [8–11]. This was demonstrated when 
HS grafts were compared with BPTB grafts [12] and QT 
grafts [13]. Since the ischiocrural muscles function as 
agonist of the ACL and as medial stabilisers, in theory, 
harvesting HS grafts could be a risk factor for recurrent 
injury. In contrast, patients who received HS grafts for 
primary ACL reconstruction had better extensor muscle 
strength compared with BPTB and QT collectives [13, 
14]. Autologous HS and BPTB grafts have been thor-
oughly investigated, and both have been shown to pro-
vide comparable results regarding restoration of knee 
joint function and clinical outcome [15, 16]. Differences, 
however, seem to be slight, and both types of grafts are 
viable options for primary ACL reconstruction [15–20]. 
Another safe, versatile and suitable graft is the QT [21–
23]. QT grafts in primary ACL reconstruction provide 
similar results to HS grafts without affecting comorbidi-
ties [24]. Lee et al. [10] showed that using either double-
bundle HS or QT autografts resulted in similar functional 
outcome, yet better flexor muscle strength was observed 
in the QT group.

Although literature is comprehensive, the discussion 
about graft choice remains controversial [1, 2, 19, 21, 25]. 
Muscle strength might be a critical predictor of clinical 
outcome [26] and return to sports or preinjury activity 
levels. There is evidence that harvesting HS grafts weak-
ens the agonists of the ACL and the MCL [9, 11], with 
the explanation that the hamstrings function as dynamic 
medial stabilisers [8]. Harvesting of HS grafts seems to 
result in strength deficits with knee flexion and inferior 
dynamic stability [12, 14, 27, 28]. In contrast, harvesting 
of QT or BPTB grafts weakens the quadriceps muscle.

Therefore, we planned to examine whether harvesting 
an HS graft is related to a deficit in dynamic knee stabi-
lisation and strength revealed by dynamic valgus as com-
pared with QT graft or the uninjured leg. Furthermore, 
the study was designed to reveal a potential strength 
deficit by compensatory neuromuscular activity of the 
quadriceps muscle.

Materials and methods
Inclusion criteria
Female and male patients, 18  years and older, who had 
received either a QT or HS autograph for ACL recon-
struction in our department with a minimum follow-up 
period of 24 months were included in this cohort study. 
Additionally, to be included in this study, the patients 
were required to have the capability to walk on the tread-
mill for as long as 10 min. Poor compliance, previous sur-
geries on the knee, relevant comorbidities such as MCL 
injury or meniscal lesions at time of injury, and current 
injuries at time of follow-up were exclusion criteria. 

Concomitant injuries and pathologies representing exclu-
sion criteria were monitored by physical examination and 
magnetic resonance imaging (MRI). To ensure consen-
sus, participants had to complete a general anamnesis 
questionnaire.

Ethical approval
All procedures involving human participants were in 
accordance with the ethical standards of the institutional 
and national research committee and with the 1964 Dec-
laration of Helsinki and its later amendments or compa-
rable ethical standards. The study was approved by the 
institutional ethical committee (AZ 14-296). Informed 
consent was obtained from all individuals, and participa-
tion was voluntary.

Demographics
Overall, between 2008 and 2014, 202 patients were iden-
tified who had had ACL reconstruction in our depart-
ment (QT: N = 51; HS: N = 152). In total, 103 patients 
met the inclusion criteria (QT: N = 23; HS: N = 80). 
Twenty-five patients participated in gait analysis (QT: 
N = 8; HS: N = 17), and were eligible for statistical analy-
sis (QT: N = 8, female: N = 4, male: N = 4; HS: N = 17, 
female: N = 8, male N = 9). There were no significant 
differences between the QT and HS treatment groups 
regarding age (QT: 23 ± 12.96 SD years; HS 37 ± 11.66 
SD years; p = 0.3565), height (QT: 175.6 ± 10.89 SD 
cm; HS: 177.3 ± 8.48 SD cm; p = 0.7093), weight (QT: 
74.5 ± 16.97 SD kg; HS: 78.54 ± 15.05 SD kg; p = 0.5754) 
and body mass index (BMI; QT: 24.09 ± 4.17 SD kg/m2; 
HS: 24.97 ± 4.39 SD kg/m2; p = 0.6374).

Clinical outcome
Clinical outcome assessment included measurement of 
the range of motion (ROM) and circumference of both 
the treated and contralateral intact leg. Leg circumfer-
ence measurements were done according to the measur-
ing sheet of the Deutsche Gesetzliche Unfallversicherung 
(DGUV) for lower extremities 20  cm and 10  cm above 
the joint line, at the middle of the patella, and 15  cm 
below the joint line. The smallest circumference of the 
lower leg was measured also. Prior to this, the domi-
nant leg was identified. The anterior drawer test and the 
Lachman test were performed. The visual analogue scale 
(VAS) for pain level and the Lysholm and KOOS scores 
were used as patient-reported quantitative outcome 
measures. Graft failures and treatment associated com-
plications were documented.

Gait analysis
For the measurement of varus–valgus angles, the Gait-
Lab system (Lutz Mechatronic Technology, Innsbruck, 
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Austria) was used. The LUKOtronic Motion-Capture-
Unit (MCU200) is equipped with infrared markers and 
sensors that allow for three-dimensional gait analysis. 
Infrared markers were fixed on the subjects as depicted 
in Fig.  1 (right). Subjects were guided through the sys-
tem and were allowed to adapt to the Calles treadmill 
(Sprintex, Kleines Wiesental, Germany) for a couple of 
minutes (Fig.  1, left). Subsequently, measurements were 
started and conducted at both 4.5 and 6.0  km/h for as 
long as 5  min. Angles were measured between marker 
No. 1–3 (left leg) and No. 5–7 (right leg). The GaitLab 
software subdivides the individual gait cycle into 50 spe-
cific moments and enables calculation of varus (negative 
values) and valgus (positive values) angles. Initial contact 
(heel strike) was defined as the start of gait cycle, and 
terminal swing was defined as individual blank value. 
To enable inter-individual comparability, varus–valgus 
angles of the terminal swing phase were subtracted from 
the values of interest at loading response, terminal stance 
and mid-stance.

Surface electromyography
Non-invasive surface electromyography was used to 
measure neuromuscular activity of the semitendinosus 
muscle, the VMO and the VLO. Electrodes (Version 
2.11, Shimmer, Dublin, IR) were placed according to 
the recommendations of the Surface ElectroMyoGrapy 
for the Non-Invasive Assessment of Muscles (SENIAM) 
projects. Sensors and wires were fixed thoroughly 
to prevent motion artefacts. Prior to measurements, 
normalisation of maximum voluntary contraction 
(MVC) was performed to enable inter-individual and 

quantitative comparability [29]. Neuromuscular activ-
ity (µV) of VMO and VLO was measured using tri-
ple maximum isometric extension of the leg for 10  s 
(defined resistance). The semitendinosus muscle was 
tested the same way, but by triple maximum isometric 
flexion of the leg. In real time, data were transferred to 
a laptop via Bluetooth, using the Multi Shimmer Sync 
software to display the raw data and the DIAdem soft-
ware (National Instruments, Munich, GER) to analyse 
the data.

Statistical analysis
Statistical power analysis was based on a study by Tash-
man et al. [30]. The authors investigated n = 6 patients 
after ACL reconstruction using gait analysis for the 
measurement of valgus adduction [°] as major outcome 
measure. They found 2.8 ± 1.6° valgus adduction in ACL 
reconstructed limbs compared with healthy contralat-
eral controls (0 ± 1.6°), resulting in an effect size of 1.75 
(Cohens d). An a priori power analysis was conducted 
with G*Power (t-test: α = 0.05, power (1−β) = 0.85, 
effect size d = 1.75) [46]. According to our hypothesis 
and based on the referred study, we calculated a mini-
mum of n = 7 per group. The data shown represent the 
means ± standard deviation (SD). The Mann–Whit-
ney U test was run on clinical outcome data (Lysholm 
score and KOOS). Gait analysis and surface electro-
myography were analysed by the robust t-test of Yuen 
for differences and the two one-sided test (TOST) for 
equality using RStudio (Version 0.99.879; Boston, MA, 
USA). Gender differences were described by the χ2 test. 
Demographic data was compared by t-tests. The level 
of significance was set at p < 0.05.

Fig. 1 Schematic figure showing the layout of the gait analysis with the LUKOtronic Motion-Capture-Unit MCU200 (left); Picture with all the infrared 
marker positions shown from behind (right)
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Results
Clinical outcome
The mean follow-up of the QT group was 68.6 months, 
and of the HS group 31.1 months. At individual follow-
ups, there were no significant differences in range-of-
motion measurements between the treated and the 
contralateral intact legs and between the two treatment 
groups. The same was true for leg circumference meas-
urements (p = 0.9673–0.1039). Pain based on VAS was 
0.75 ± 1.39 SD in the QT group and 0.35 ± 0.86 SD in 
the HS group. The difference between the two groups 
was not statistically significant (p = 0.4746). Functional 
scores for both groups were excellent at time of follow-
up (QT: Lysholm: 86.88 ± 10.09 SD, KOOS: 91.32 ± 8.44 
SD; HS: Lysholm: 92.06 ± 9.32 SD, KOOS: 91.04 ± 8.22 
SD). The overall difference between functional scores 
and differences between subcategories of select scores 
were not statistically significant (overall Lysholm score 

p = 0.18; overall KOOS score p = 0.821), except for a 
slight but significant advantage for the HS group for the 
Lysholm score item ‘climbing stairs’ (QT: 9.0 ± 1.85 SD; 
HS: 10 ± 0.0 SD; p = 0.04).

Gait analysis
Gait analysis revealed no significant differences of varus–
valgus angles when comparing treated and contralat-
eral intact legs. This was independent of the choice of 
transplant (QT or HS). These findings applied for load-
ing response, mid-stance and terminal stance both at 
4.5 km/h and 6.0 km/h. For detailed yield and p-values, 
see Table  1. When comparing the two different treat-
ment groups (QT versus HS), there were no significant 
differences in varus–valgus angles measured at load-
ing response, mid-stance and terminal stance both at 
4.5 km/h and 6.0 km/h. For detailed yield and p-values, 
see Table  2. This was further evaluated, and a signifi-
cant equality between the treated QT and HS group in 
varus–valgus angles measured at mid-stance and termi-
nal stance both at 4.5 km/h (p = 0.0011; p = 0.0103) and 
6.0 km/h (p = 0.0002; p = 0.0132) could be proven (Fig. 2).

Surface electromyography
Surface electromyography was used to measure neu-
romuscular activity of the semitendinosus muscle, the 
VMO and the VLO. At 4.5 km/h, five QT cases and six 
HS cases were analysed, and six QT cases and seven HS 
cases were analysed at 6.0 km/h. In the QT group, there 
was one significant difference between the treated and 
contralateral intact legs with respect to VMO activity 
measured at loading response and terminal stance at 
6.0 km/h (loading response: p = 0.046; terminal-stance: 
p = 0.015, Fig. 3). There were no other significant differ-
ences in the QT group. In the HS group, surface elec-
tromyography did not reveal any significant differences 
when comparing treated and contralateral intact legs, 
three different muscles and different stance phases. 
When comparing the treated legs of the QT and the HS 

Table 1 Mean values and standard deviations of the varus–
valgus angles for the treated and contralateral intact knees in the 
QT and HS group during the loading response, mid-stance and 
terminal stance at 4.5 km/h and 6.0 km/h

Treated Control N p

QT

 4.5 km/h Loading response −1.48 ± 2.09 0.81 ± 0.99 8 0.65

Mid-stance −1.13 ± 1.56 −0.84 ± 1.38 8 0.9

Terminal response −1.02 ± 1.28 −1.06 ± 1.66 8 0.93

 6.0 km/h Loading response −0.29 ± 0.77 −0.49 ± 0.67 8 0.63

Mid-stance −0.03 ± 0.89 −0.1 ± 0.18 8 0.99

Terminal response −0.06 ± 1.87 −0.18 ± 1.54 8 0.95

HS

 4.5 km/h Loading response −0.16 ± 0.92 −0.15 ± 0.94 17 0.2

Mid-stance −0.36 ± 0.93 −0.1 ± 1.08 17 0.17

Terminal response −0.83 ± 1.27 −0.54 ± 1.11 17 0.5

 6.0 km/h Loading response −0.18 ± 0.92 0.14 ± 0.87 16 0.28

Mid-stance −0.03 ± 0.9 0.36 ± 0.95 16 0.09

Terminal response −0.1 ± 1.54 0.55 ± 1.17 16 0.23

Table 2 Mean values and standard deviations of the varus–valgus angles for the treated knee in the QT and HS group during the 
loading response, mid-stance and terminal stance at 4.5 km/h and 6.0 km/h

QT HS

Treated N Treated N p

4.5 km/h Loading response −1.48 ± 2.09 8 −0.16 ± 0.92 17 0.2388

Mid-stance −1.13 ± 1.56 8 −0.36 ± 0.93 17 0.5058

Terminal response −1.02 ± 1.28 8 −0.83 ± 1.27 17 0.7319

6.0 km/h Loading response −0.29 ± 0.77 8 −0.18 ± 0.92 16 0.8109

Mid-stance −0.03 ± 0.89 8 −0.03 ± 0.9 16 0.4902

Terminal response −0.06 ± 1.87 8 −0.1 ± 1.54 16 0.7572
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groups, we found a significant difference (p = 0.0097) 
in VMO activity at terminal stance at 6.0 km/h (Fig. 4) 
with increased activity in the QT group and normal 
activity comparing in the HS group comparing the 
treated and contralateral intact legs. Other differences 
were not statistically significant.

Discussion
Biomechanical studies implementing gait analysis have 
primarily focused on sagittal knee joint kinematics of 
ACL deficient and reconstructed knees [31, 32]. Data 
on dynamic changes in frontal knee joint angles com-
paring two different grafts have been analysed less often 
[31–33]. Reconsideration of dynamic stability after ACL 

Fig. 2 Boxplot charts comparing the varus–valgus angles between the QT (red) and HS (green) group during mid- and terminal stance at 4.5 km/h 
and 6.0 km/h. All four boxplot charts show significant equality between the treated knees of both groups
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reconstruction is not trivial because a dynamic valgus is 
a crucial predictor for clinical outcome and the return 
to sports or preinjury activity [26]. According to Abrams 
et  al., harvesting HS grafts may result in strength defi-
cits with knee flexion compared with BPTB-treated col-
lectives [12]. Mohammadi et  al. showed that HS grafts 
for ACL reconstruction performed better in terms of 
quadriceps strength in comparison with patients in the 
BPTB group [14]. Patients after ACL reconstruction had 
reduced quadriceps and hamstring strength and inferior 
dynamic stability, including hop performance and jump-
landing strategy [14, 27, 28]. There is evidence that har-
vesting HS grafts weakens the agonists of the ACL and 
the main medial stabilizer MCL [9, 11], with the expla-
nation that the hamstrings function as dynamic medial 
stabilisers [8]. Dynamic valgus indicates impaired medial 
stabilisation and consequently higher risk for re-injury. 
Comparing two different surgical techniques helps in 
deciding whether the current gold standard, HS graft [4], 
particularly in athletes [5], or other well-known grafts 
such as QT or BPTB grafts should be selected [2, 3].

In our study, both ACL reconstruction techniques (QT 
and HS) provided excellent clinical outcome, which is in 
line with other studies [34–37]. Gait analysis also proved 
both ACL reconstruction techniques to be successful. 

We could not find any significant difference between the 
QT and the HS groups. Moreover, we could not find any 
difference in frontal knee joint kinematics during walk-
ing compared with healthy contralateral controls. This 
is worth mentioning because prevailing dynamic valgus 
might have indicated muscular deficits due to the choice 
of implant. As for our hypothesis, this was true neither 
for the QT nor the HS group.

We could not confirm that the anticipated HS graft-
related strength deficit would be compensated by 
higher neuromuscular activity of the quadriceps muscle. 
The opposite was true as treated legs in the QT group 
revealed a significantly higher VMO activity compared 
with healthy contralateral legs in the QT group and 
treated legs in the HS group. In contrast, surface electro-
myography in the HS group did not reveal any significant 
differences when comparing treated and contralateral 
intact legs. A higher neuromuscular activity of the VMO 
at terminal stance was found in the QT group, whereas 
Perry et al. described that there is usually no VMO activ-
ity at terminal stance in healthy collectives [38].

Xergia et  al. summarized that isokinetic muscle 
strength deficits after ACL reconstruction are linked to 
the location of the donor site [39]. Ageberg et  al. sug-
gested that the strength deficit of the hamstrings and 

Fig. 3 Boxplot charts showing VMO activity (µV) for the treated and contralateral side in the QT group during loading response and terminal stance 
at 6.0 km/h. In both phases, there is a significant difference between the treated and contralateral intact side
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the lower hamstring-to-quadriceps ratio after HS har-
vesting will impair dynamic knee joint stabilisation [8]. 
Other studies showed that there is a strength deficit after 
harvesting BPTB or HS grafts even 5  years post ACL 
reconstruction [26, 40]. This evidence conflicts with our 
results, as enhanced neuromuscular activity of thigh 
muscles or dynamic valgus was not observed in the HS 
group, indicating either compensation of strength deficit 
or lack of medial stabilisation. A mild varus kinematic 
rather than dynamic valgus in both ACL reconstruction 
groups was found. Although mild varus kinematic cannot 
generally be equated to varus thrust, it is suspected to be 
a major reason for ACL reconstruction failure [41] and 
should be subject to further investigation, with respect to 
collective specific re-rupture rates.

We found increased VMO activity in the QT group, 
in line with a publication by Iriuchishima et  al. [42], 
which showed quadriceps hypotrophy within 6 months 
after surgery, although hypotrophy had recovered after 
12  months. This is remarkable because the mean fol-
low-up of our QT group was 68.6  months compared 
with 31.1  months in the HS group. Thus, we could 
have expected a recovery especially of the QT group as 
described by Iriuchishima et al. [42]. Higher neuromus-
cular activity can also be interpreted as a compensatory 

mechanism for the strength deficit yet is not equal to 
muscle strength. In contrast, Bryant et  al. concluded 
that subjects after ACL reconstruction demonstrated 
enhanced motor unit recruitment reflective of reduced 
quadriceps muscle fibre atrophy. This is coupled with 
increased quadriceps strength and musculotendinous 
stiffness of the lower limb musculature [43].

In conclusion, our results suggest that harvesting HS 
grafts for primary ACL reconstruction may not affect 
dynamic medial stabilisation. Our results are support-
ive of the use both of QS and of HS grafts for primary 
ACL reconstruction [36, 44]. However, graft fixation, 
gender, additional injuries and donor site morbidity 
have to be considered when deciding which graft to 
choose [20, 45]. Shortcomings of the present study are 
the small population, which is primarily due to the life-
like heterogeneity and concomitant injuries particularly 
of the MCL, which are prevalent in approximately one-
third of all ACL cases. These cases had to be excluded. 
Moreover, dynamic valgus is multifactorial, and hip 
abductor, knee rotation and foot pronation issues 
should also be considered. Cadaveric cutting studies 
may have the potential to answer this eventually.
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